ETFE

ETFE (ethylene tetrafluoroethylene)

ETFE is used in applications where impact resistance and good resistance to stress cracking is required.

This fluoropolymer compound remains these properties even during continuous working temperature of 150°C. Therefore ETFE is an excellent choice for applications in the chemical industry.

Material Properties

llor

- Excellent impact resistance
- Excellent chemical resistance
- Good resistance to stress cracking
- Working temperature from -200°C to +150°C

Possibilities

- ETFE tubing
- Cleanroom ETFE tubing
- ETFE high pressure hoses
- ETFE film/foil
- ETFE rod
- ETFE monofilament
- Coating with ETFE
- etc.

Technical information

Because ETFE has an excellent chemical resistance and a good resistance to stress cracking, ETFE is often used in the chemical and mechanical industry.

[]

ETFE

General properties ETFE

	Property	Specification	Unit	Value
General	Continuous working temp.	Maximum	°C	150
	Chemical resistance		-	Excellent
	Specific gravity	D 792	g/cm³	1.73
Electrical	Dielectric constant	D 150 at 10 ³ Hz	-	2.6
		D 150 at 10 ⁶ Hz	-	2.6
	Dielectric dissipation factor	D 150 at 10 ³ Hz	-	0.0008
		D 150 at 10 ⁶ Hz	-	0.005
	Dielectric strength	D 149	kV/mm	40
	Volume resistivity	D 257	Ohm∙cm	>10 ¹⁶
Mechanical	Tensile strength	D 1708, D 638	Мра	45
	Elongation	D 1708, D 638	%	200
	Compressive strength	D 695	Мра	48
	Impact strength	D 256 bij +23°C	J/m	No break
	Flexural Modulus	D 790 bij +23°C	Мра	1380
	Tensile Modulus	D 638	Мра	830
	Hardness	D 2240	-	63-75
Thermal	Melting (gel)point		°C	260
	Thermal conductivity	+23°C	W/Kg.m	0.24
	HDT	DIN 75	°C	
	method A			104
	method B			71

Actual properties may change due to processing method, compound type, extruded dimensions and other variables. It is the user's responsibility to evaluate and fully test the suitability of the product for their specific application

